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Constrained Coding for the Deep-Space
Optical Channel

B. Moision1 and J. Hamkins1

We investigate methods of coding for a channel subject to a large dead-time
constraint, i.e., a constraint on the minimum spacing between transmitted pulses,
with the deep-space optical channel as the motivating example. Several constrained
codes designed to satisfy the dead-time constraint are considered and compared on
the basis of throughput, complexity, and decoded error rate. The performance of
an iteratively decoded serial concatenation of a constrained code with an outer
code is evaluated and shown to provide significant gains over a Reed–Solomon code
concatenated with pulse-position modulation.

I. Introduction

A free-space optical communications system is most efficient when the peak-to-average-power ratio of
the signal is large [1,2]. These large ratios can be achieved by M -ary pulse-position modulation (PPM),
in which log2 M bits choose the location of a single pulsed slot in an M -slot frame. In theory, PPM
can lead to an unbounded capacity [3], but in practice bandwidth constraints place a limit on capacity
[4]. Nevertheless, when no noise is present in the system, it has been shown that PPM is near-capacity
achieving [1,5].

A Q-switched laser works well with the PPM format [6,7], because it can successfully confine a large
pulse energy to a narrow slot. One side effect of Q-switched lasers, however, is a required delay, or dead
time, between pulses during which the laser is recharged. This delay is significant relative to the pulse
duration. PPM may be modified to satisfy the dead-time constraint by following each frame by a period
during which no pulses are transmitted. However, this affects the optimality of PPM as a modulation
format.

There are more efficient—measured in throughput, or bits/second—ways to transmit information over
a channel subject to a dead-time constraint. The problem of signaling efficiently under such a constraint
has been well studied for applications in magnetic storage, where a similar restriction is imposed to
compensate for the interference between magnetic media corresponding to closely recorded bits. Efficient
signaling is affected by a modulation, or constrained, code. The deep-space problem is novel in that the
dead time is very large relative to the slot duration—on the order of 256 to 1024 times the slot duration
compared to 1 to 2 times in magnetic storage applications.
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This article investigates the application of constrained codes to the deep-space optical channel and is
organized as follows. In Section II, we describe the channel model and introduce notation; in Section III,
we quantify the potential throughput gains available from constrained codes; in Section IV, we discuss
implementation issues of various approaches; and, in Section V, we demonstrate the implementation of a
constrained code in an iterative coding scheme.

II. Preliminaries

This article considers the binary-input, real-valued-output channel model shown in Fig. 1. First,
information bits are encoded using an error-correcting code. Next, the constrained code takes these
coded bits and encodes them further in a way that ensures the laser can physically transmit them, as we
explain here. Time is partitioned into slots of duration Ts during which the laser may either transmit a
pulse (a one) or not transmit a pulse (a zero), i.e., on–off keying (OOK)—see Fig. 2. In unconstrained
OOK, a zero or one may appear in any position within the sequence of transmitted binary symbols.
Q-switched lasers requiring dead time Td between pulses impose the constraint that at least d

def= �Td/Ts�
zeros occur between ones. Slot synchronization, typically implemented by an early–late gate tracking
loop, imposes an additional constraint that no more than Tk seconds may elapse between pulses. In
the transmitted binary sequence, this corresponds to the constraint that no more than k

def= �Tk/Ts�
zeros occur between ones. Together, the two constraints are referred to as a (d, k) constraint and the
collection of sequences satisfying the constraint as a (d, k) constrained system. An invertible mapping of
unconstrained binary sequences into the (d, k) system is referred to as a constrained code [8,9]. Although
it may be advantageous to violate the dead-time constraint, sending pulses with smaller power at shorter
intervals, in this work it is assumed the dead-time Td is a hard constraint, i.e., pulses must be separated
by Td seconds. The constrained-code encoder in Fig. 1 makes sure the (d, k) constraint is satisfied.
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Fig. 1.  The communications system considered in this article.
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Fig. 2.  The optical channel is constrained on- off keying.  A one represents
a pulsed slot, and a zero a nonpulsed slot.  There is at least Td and at most
Tk seconds between pulsed slots.
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At the receiver, light is focused on a detector. The detector output can be either discrete or continuous,
depending on the type of detector. For example, the output of a photon-counting detector is the number
of detected photons, which has a Poisson distribution. In most detectors—including photomultiplier
tubes (PMTs), avalanche photodiode (APD) detectors, and even coherent detectors—the output is a
real-valued voltage or current that arises from the detector input as well as from random processes within
the detector and follow-on circuitry. These effects may be modeled in a variety of ways: the Poisson
model is often used for PMTs, although a more accurate model is known in that case [10]; a Gaussian,
Webb, or Webb-plus-Gaussian model can be used for APDs [11]; and a Gaussian model is appropriate
for a coherent detector.

Throughout this article, we shall use a Gaussian model for statistics called the additive white Gaussian
noise (AWGN)-1 model [11], in which the slot statistics at the output of the detector are independent and
of the form y = s+n, where s ∈ {0, 1} is the binary symbol transmitted and n is zero-mean Gaussian noise
with variance σ2 = N0/2. The symbol energy is Es = E[s2], so that, when used with a rate Rc bits/slot
code,

Eb

N0
=

Es

RcN0
=

E[s2]
2Rcσ2

We rely on the AWGN-1 channel model and report results as a function of the bit SNR, Eb/N0, due to
its simplicity and the fact that all the above-mentioned channel models behave in a way that is largely
dominated by a bit SNR parameter [11] analogous to Eb/N0. Hence, we expect coding results presented
here will apply to a wide variety of channel models, in the sense that the relative coding gains of the
various schemes will be about the same under different channel models and operating points.

Performance results in the literature are often given in terms of bits per photon, not Eb/N0. This is
a useful metric when the statistics are Poisson, particularly with low background light. However, stating
results in bits per photon for the Gaussian channel model requires a determination of the relationship
between Eb and the number of photons emitted from the laser. This typically is a nonlinear relationship
and varies greatly from laser to laser. That is, results stated in terms of bits per photon would only apply
to a particular choice of laser having that Eb-to-bits-per-photon relationship. Instead, by keeping the
results in terms of Eb/N0, we can make general conclusions and apply the conversion to bits per photon
for a variety of potential lasers.

Throughout this article, we compare the new schemes against a baseline scheme in which, in Fig. 1,
the error-correcting code is a Reed–Solomon code and the constrained code is PPM with added dead
time.

III. Throughput of Various Constrained Codes

The k constraint is considered a design parameter—smaller values being preferred, unlike the d con-
straint, which must be satisfied. Hence, we will investigate achievable rates of codes into the (d,∞)
constraint—i.e., no maximum run-length constraint. Any constrained system may be described by a
directed, labeled graph. Figure 3 is a graph presenting the (d,∞) constrained system, where 0x denotes
a string of x zeros.

0 10d0

Fig. 3.  The (d ,    ) system.
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The system is the set of sequences obtained by reading the labels of paths on the graph. The capacity
of the (d,∞) system when used on an error-free channel,

C(d) def= lim
n→∞

1
n

log2 |words of length n in the (d,∞) system|bits/slot (1)

is the asymptotic growth rate of the number of distinct words, i.e., finite-length patterns, in the system and
the least upper bound on the rate of a code into the system. From [12], we have C(d) = ln(λ) nats/slot,
where λ is the largest positive root of

λ−(d+1) + λ−1 − 1 = 0 (2)

For small d, exact solutions may be found efficiently for Eq. (2). For large d, substitute λ = eC(d) and
use the approximation e−C(d) ≈ 1 − C(d), which yields C(d)e(d+1)C(d) ≈ 1 and thus

d + 1 ≈ (d + 1)C(d)e(d+1)C(d)

or

C(d) ≈ W (d + 1)
Ts(d + 1) ln 2

bits/s (3)

where W (z) is the productlog function that gives the solution for w in z = wew. Table 1 lists capacities
for Ts = 1.

Table 1. Capacity of (d,∞∞∞) constrained codes and relative efficiencies
of some particular schemes, all to 4 significant digits.

Capacity,
d EPPM ETPPM ESTPPM ENPM

bits/s

1 0.6942 0.5787 0.8361 0.7202 —

2 0.5515 0.6057 0.8524 0.6045 0.9067

4 0.4057 0.6382 0.8701 0.8217 —

8 0.2788 0.6729 0.8871 0.7175 0.8968

16 0.1813 0.7069 0.9020 0.7880 —

32 0.1130 0.7380 0.9146 0.8847 —

64 6.785 × 10−2 0.7702 0.9304 0.8670 0.9158

128 4.008 × 10−2 0.7921 0.9364 0.9242 —

256 2.319 × 10−2 0.8116 0.9420 0.9375 —

512 1.320 × 10−2 0.8286 0.9471 0.9352 —

1024 7.418 × 10−3 0.8434 0.9516 0.9427 —

2048 4.124 × 10−3 0.8562 0.9556 0.9435 0.9472
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With RC(d) denoting the rate of a constrained code C into the (d,∞) system, EC(d)
def= RC(d)/C(d) is

the relative efficiency of the code, measuring how close the code rate is to the limit. There are well-known
techniques to construct codes into a constrained system at rates arbitrarily close to capacity, e.g., [8,9].
However, for our parameter range, a straightforward application of these approaches may be prohibitively
complex. In the following sections, we present some approaches that trade efficiency for complexity.

A. Pulse-Position Modulation with Added Dead Time

First consider the efficiency of what will be considered the baseline, shown in Fig. 4. It consists of a
constant M -slot PPM frame followed by a d-slot dead time. A graph and tree presenting the allowable
PPM code sequences with a dead-time constraint are illustrated in Fig. 5. Allowable sequences are read
off the graph as described above. Code sequences on the tree are generated by traversing the tree.
Considering PPM as a (d,∞) constrained code, the rate is

RPPM(d, M) =
log2(M)

Ts(M + d)
bits/s

For a given value of d, we find M∗, which is the argument that maximizes RPPM(d, M), by solving
∂RPPM(d, M)/∂M = 0, which yields

ln(M∗)
M∗ + d

=
1

M∗

or

M∗ =
d

W (d/e)
(4)

We will allow noninteger M in analysis to simplify expressions, since rounding has a negligible effect on rate
for large d. However, all numerical results will be for integer M . Noting that RPPM(d, M∗) = 1/TsM

∗,
the maximum rate is

RPPM(d) =
W (d/e)
Tsd ln 2

bits/s

By an application of L’Hôpital’s rule, one can show EPPM(d) → 1 as d → ∞, i.e., PPM achieves capacity
in the limit of large d. However, for d in our range of interest, significant gains in throughput over PPM
are available, as illustrated in Table 1.

d slots
DEAD TIME

d slots
DEAD TIME

d slots
DEAD TIME

M slots
(1 PPM
symbol)

M slots
(1 PPM
symbol)

M slots
(1 PPM
symbol)

Fig. 4.  PPM signaling with a dead-time constraint.
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Fig. 5.  PPM code sequences:  (a) graph and (b) tree.

B. Truncated PPM with Added Dead Time

With PPM, there are “unused” nonpulsed slot positions in the transmitted signal following each pulse—
unused in the sense that they neither convey information nor are necessary for satisfying the dead-time
constraint. It would be more efficient for the log2 M bits to map to a pulsed slot position and follow
each pulse by exactly d nonpulsed slots. This signaling scheme is referred to as truncated PPM (TPPM)
[13] and is illustrated in Fig. 6. A graph and tree presenting the allowable TPPM code sequences are
illustrated in Fig. 7.

Since the duration of a codeword mapping to log2 M bits is variable, the code has an average rate

RTPPM(d, M) =
ln(M)

Ts

(
M + 1

2
+ d

)
ln 2

bits/s

For a given value of d, we find M∗, which is the argument that maximizes RTPPM(d, M), by solving
∂RTPPM(d, M)/∂M = 0, which yields

M∗ =
2d + 1

W

(
2d + 1

e

)

Noting that RTPPM(d, M∗) = 2/TsM
∗, the maximum achievable rate is

d slots
DEAD TIME

d slots
DEAD TIME

d slots
DEAD TIME

   M slots
(1 PPM
symbol)

   M slots
(1 PPM
symbol)

   M slots
(1 PPM
symbol)

Fig. 6.  In TPPM signaling, the designated dead time begins immediately after the
pulse of the PPM symbol.
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Fig. 7.  TPPM code sequences:  (a) graph and (b) tree.

RTPPM(d) =
2W

(
2d + 1

e

)
Ts(2d + 1) ln 2

bits/s

Since RTPPM(d) is bounded above by C(d) and below by RPPM(d), TPPM also achieves capacity in the
limit of large d. TPPM is a low-complexity scheme that demonstrates significant throughput gains over
PPM, e.g., Table 1. However, there are practical issues with implementing variable-rate decoders; these
are addressed in Section IV.

C. Nonpulsed Systems

PPM and TPPM with added dead time both satisfy a (d, k) constraint for finite k. A small k is
desirable for slot-timing recovery. Suppose, however, that a finite k is not required. In this subsection,
we consider the efficiency of codes that allow arbitrarily long sequences without a pulse. To facilitate
this, we describe a class of constrained systems, the (M, d,∞) systems [14]. A sequence over an M -ary
alphabet {0, 1, · · · , M − 1} belongs to an (M, d,∞) constrained system if there are at least d but no
more than k zeros between two nonzero symbols. The capacity of the system, in the sense of Eq. (1), is
C(M, d,∞) = log2(λ) bits/symbol, where λ is the largest positive root of (M − 1)λ−(d+1) + λ−1 − 1 = 0.

The nonpulsed systems are introduced in this way as it will lead to simple descriptions of low-
complexity, highly efficient codes.

To satisfy an underlying (d,∞) constraint, choose the system (M +1, �d/M�,∞) and map each symbol
in the alphabet {0, 1, · · · , M} to an M -bit, or M -slot, word with a single one in the ith slot. With this
mapping, the (M +1, �d/M�,∞) system, illustrated in Fig. 8, maps to a subset of the (d,∞) system. The
capacity of system (M + 1, �d/M�,∞), which we will denote C(M, d), is C(M, d) = [ln(λ)/M ] nats/slot,
where λ is the largest positive root of

Mλ−(�d/M�+1) + λ−1 − 1 = 0 (5)

Fig. 8.  The (M + 1,  d /M   ,    ) system.
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For small �d/M�, exact solutions may be found efficiently for Eq. (5). For large �d/M�, substitute
λ = eMC(M,d) and use the approximation e−MC(M,d) ≈ 1 − MC(M, d), giving

C(M, d) ≈ W
(
M(�d/M� + 1)

)
TsM(�d/M� + 1) ln 2

bits/s (6)

Note that for M = 1 this reduces to Eq. (3).

Table 2 illustrates the trade-off of capacity versus M , the size of the alphabet, for the case d = 512.
We also tabulate C(M, d)/C(d), a measure of achievable efficiency. There exist capacity-achieving, low-
complexity codes into (M + 1, �d/M�,∞) systems for certain pairs (M, d). These codes are discussed in
Subsection IV.A.

Table 2. Capacity and achievable efficiency of (M + 1,���d /M ���∞∞∞)
systems that satisfy a (512,∞∞∞) constraint.

M C(M, 512)
C(M, 512)

C(512)

1 0.0132008 1

2 0.0131796 0.998

4 0.0131795 0.998

8 0.013137 0.995

16 0.0130521 0.989

32 0.012883 0.976

64 0.0125487 0.951

128 0.0119012 0.902

256 0.0107203 0.812

512 0.00885132 0.671

D. Rate Comparisons

Figure 9 illustrates M∗, the optimum choice of M , for PPM and TPPM as a function of d. We observe
M∗ increases roughly linearly with d over the range plotted. Figure 10 illustrates the efficiencies of fixed
orders of PPM, the optimal order for TPPM, and STPPM as a function of d. The PPM order begins
with 2 and increases in powers of two to 256. As noted before, the efficiencies of the schemes—when
allowed to choose optimal order—will approach 1 for large d.

Suppose that Td is fixed but Ts is a design parameter. Without a d constraint, a linear decrease in Ts

would yield a linear increase in throughput. However, this is not the case in the presence of a d constraint.
Figure 11 illustrates the rates of PPM and TPPM and the capacity of the constraint as a function of Ts

for Td = 10.24 µs. The throughput increases linearly for an exponential decrease in Ts, and the slopes in
Fig. 11 quickly approach—as Ts decreases—a constant − ln(10)/(Td ln(2)) ≈ −0.324 Mbit/s, such that a
10-fold decrease in Ts is required to affect an increase of 0.324 Mbit/s in throughput.

IV. Constrained Encoders and Decoders

A. Nonpulsed-Position Modulation: Efficient and Low Complexity

As noted in Subsection III.C, with the appropriate (M + 1)-ary alphabet, a code satisfying a (M +
1, �d/M�,∞) constraint satisfies a (d,∞) constraint. The following results were shown in [14,15]:
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Result 1. ∀d ∈ [0,∞) C(M, d,∞) is rational only for {M : M = 2dm(2m − 1) + 1, m integer}.

Result 2. ∀d ∈ [0,∞) and {M : M = 2dm(2m − 1) + 1, m integer}, C(M, d,∞) = m bits/symbol.

Result 3. ∀(M, d,∞) with rational capacity C, there exists a fixed-rate code into (M, d,∞) with R = C
and 2dm encoder states.

Result 3 is significant in two respects: first, it shows the existence of capacity-achieving codes; second,
the encoders have the fewest states for a fixed-rate code into the constraint with R = C. We will refer
to capacity-achieving codes into (M + 1, �d/M�,∞) systems as nonpulsed-position modulation (NPM).
From Result 1, the capacity is rational only for those pairs (�d/M�, M) such that

M = 2�d/M�m(2m − 1)

for integer m. Taking m = 1 and assuming integer d/M , we have

M =
d ln 2

W (d ln 2)
(7)

Table 3 lists all pairs (d, M) with integer d/M , d ≤ 212, that satisfy Eq. (7). There is an NPM code
corresponding to each entry with 2d/M encoder states. The efficiency of the code relative to the (d,∞)
constraint is ENPM(d) = C(M, d)/C(d).

Note that, for integer d/M , we have the exact solution

C(M, d) =
W (d ln 2)
Tsd ln 2

bits/s

which we can compare to Approximation (6).

Figure 12 illustrates the performance of an NPM code relative to PPM for d = 64. The NPM code has
a lower average transmitted energy—1 pulse per ≈96 slots compared to 1 pulse per 80 slots for PPM—
and a higher throughput—1 bit per 16 slots compared to 1 bit per 20 for PPM. Hence, NPM delivers
6 bits per pulse compared to 4 bits per pulse for PPM. However, since the NPM code allows an all-zeros
sequence, the minimum Euclidean distance is 1, half the minimum distance of PPM. This yields a net

Table 3. Efficiency and complexity for NPM.

Number of
d M encoder ENPM

states

2 2 2 0.9067

8 4 4 0.8968

24 8 8 0.9050

64 16 16 0.9158

160 32 32 0.9281

384 64 64 0.9352

2048 256 256 0.9472

10



loss in performance as a function of Eb/N0 for a specified d in spite of the throughput and average energy
gains. This loss, however, may be returned in a concatenated coding scheme. The larger problem with
NPM codes is the difficulty of acquiring synchronization.

Any sequence in a (d,∞) system may be uniquely parsed into patterns, or phrases, 0j1, where j ≥
d. The phrases 0j1 are referred to as run-lengths, and their distribution will have an impact on slot-
synchronization schemes. Figure 13 illustrates the distribution of lengths of run-lengths for the case
d = 64 of the NPM code described above, 16-ary PPM, 32-ary TPPM, and the optimal, capacity-achieving
distribution.

B. TPPM: Variable-Rate Implementation Issues

TPPM is an attractive low-complexity, high-throughput scheme. However, it has two implementation
issues that are common to variable-rate schemes. The first is the difficulty of adapting decoding algorithms
to function with variable-rate codes. It may be particularly difficult to accommodate the code as an inner
code in a concatenated coding scheme since a block of data from the outer code would map to a variable-
length block of transmitted symbols.

The second problem is the possibility of catastrophic error propagation in decoding due to loss of
frame synchronization. Assume the TPPM decoder operates similarly to a PPM decoder, by choosing
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the maximum slot count in an appropriate window. If an error is made in the estimation of the pulse
position, the location of the following window will be incorrect. The detector will, however, resynchronize
with the next correctly detected pulse position. In Appendix A we show the probability of resynchronizing
in the frame following a pulse-position estimation is ≈2/3 for small probability of pulse-position error
and large M .

There may be methods of averting the problems with TPPM by buffering data and performing an
appropriate sequence-detection algorithm. However, given lower-complexity options with similar perfor-
mance, we did not pursue implementing TPPM.

C. Permutation Modulation Codes

Permutation codes were introduced by Slepian [16] and were later proposed for constructing high-rate
(d, k) codes by Wolf [17]. An application of a permutation code for an optical channel was described
in [18], although not subject to a d constraint. Permutation codes are attractive as they have simple
maximum-likelihood (ML) decoders, albeit with complex encoders. Wolf showed that permutation codes
asymptotically achieve the capacity of a (d, k) constraint but didn’t address the complexity of encoding.
Recent work by Datta and McLaughlin [19] has addressed issues of encoding complexity. Permutation
codes are an attractive option for implementing our constraints for the reasons mentioned—namely, they
can be made arbitrarily efficient and have low-complexity ML decoding. We will see, however, that the
complexity for our range of d prohibits their use. We will give a brief description in order to quantify the
encoder complexity.

A sequence in the (d,∞) system may be uniquely parsed into phrases 0j1, where j ≥ d. To construct a
permutation code, choose a phrase profile vector v = (v1, v2, · · · , vN ), where each vi is an allowed phrase
and phrases may be repeated. The permutation codebook U corresponding to v consists of all distinct
permutations of v. Clearly, U may be used to construct a code into the (d,∞) constraint.

Let nj be the number of times phrase 0j−11 appears in v. Then all codewords have length L =∑∞
j=d+1 jnj and

|U | =
N !∏∞

j=d+1 nj !

We can design a code with rate RPC = log |U |/(LTs) arbitrarily close to C(d) by taking N sufficiently
large and choosing a phrase profile vector with nj/N ≈ 2−jC(d). However, for C(d) small, N must be
chosen very large for the code to be efficient. Table 4 lists the parameters of the permutation code
with the smallest N such that the efficiency exceeds that of PPM [using the optimal choice of M from
Eq. (4)]. We see that the size of the codebook for a competitive complexity rules out permutation codes.
This conclusion doesn’t take into account the error-correcting capability of a permutation code, which
would be significantly better than PPM. However, this capability would be more efficiently obtained by
concatenating a lower-complexity outer error-correcting code.

D. Synchronous Variable-Length Codes

The encoders considered so far have been either fixed rate or variable rate. Allowing a variable rate adds
a degree of freedom in design, resulting in higher-efficiency and/or lower-complexity encoders. However,
variable-rate encoding and decoding has practical drawbacks. A compromise is to allow a synchronous
rate, namely mappings of mp bits to mq bits, where p, q are fixed positive integers and m is a positive
integer that can vary. Methods of constructing synchronous variable-length codes were initially described
in [20], and reviews of various approaches may be found in [9,21].

12



We describe a new systematic procedure to construct synchronous encoders and decoders for (d,∞)
constraints. The procedure may be interpreted as a practical method of approaching rates of TPPM,

Table 4. Permutation codes.

Phase
Codebook Codeword

profile
d size length EPC(d)

length|U | log2 L
N

64 2278 ≈ 5 × 1083 12.4 65 0.773

128 2548 ≈ 9 × 10164 14.1 109 0.792

256 21091 ≈ 3 × 10328 15.8 188 0.811

512 22171 ≈ 3 × 10653 17.6 329 0.829

1024 24354 ≈ 5 × 101310 19.4 586 0.844

suggested by Dolinar’s “partially padded PPM.”2 Choose a rate p/q < C(d) bits/slot. We desire a set
of variable-length codewords C = {c1, c2, · · · , cN} such that any sequence formed by freely concatenating
the codewords satisfies the constraint, the codeword lengths l(ci) are multiples of q, no codeword is the
prefix of another (sufficient but not necessary to guarantee decodability), and the collection satisfies the
Kraft (in)equality:

∑
ci∈C

2−l(ci)p/q = 1 (8)

We can use such a set to construct a synchronous variable-length code mapping unconstrained binary
sequences into the constraint.

We detail one method to construct such a set that leads to a low-complexity encoder and decoder. The
codewords are constructed as nodes on a binary tree. The root of the tree is the pattern 0d. Branches
with a label 1 are extended with zeros to the first length that is a multiple of q. At this point, the branch
label is taken as a codeword. The tree is expanded until we have a set of codewords that satisfies Eq. (8).
Figure 14 illustrates the procedure for (d, k) = (16,∞), q = 7.

The all-zeros pattern is not allowed as a codeword, since allowing it reduces the minimum Euclidean
distance from 2 to 1, the small gain in throughput does not offset the loss in distance (allowing the all-
zeros codeword does yield significant throughput gains for small d), and a finite k constraint is desired for
synchronization. The encoding and decoding may be done at a fixed rate by using encoders and decoders
with appropriate memory. Codes constructed via this method will be referred to as synchronous truncated
pulse-position modulation (STPPM). A simple encoder implementation exists if we allow variable-out-
degree states. A rate 1/7 variable-out-degree encoder/decoder trellis corresponding to Fig. 14 is described
in Appendix B.

This procedure does not allow rates arbitrarily close to capacity. One can show a rate p/q encoder
may be constructed via this method into a (d,∞) constraint if K(q, d, p) ≥ 1, where

K(q, d, p) = 2−lp

(
lq − d +

q − 1
2p − 1

)

2 S. Dolinar, “Pulsed Optical Communication with a Dead-Time Constraint,” preprint, Jet Propulsion Laboratory,
Pasadena, California, February 2001.
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Fig. 14.  STPPM construction for
(d , k  ) = (16,    ), q  = 7.
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and l = 
d/q� + 1. A simple encoder/decoder trellis may be constructed if variable-out-degree states are
allowed. An encoder using variable-out-degree states exists with

m =

⌈
1
p

log2

(
q − 1(

K(q, d, p) − 1
)
(2p − 1)

)⌉

states and no more than

mq + l − 1 − d

edges. Table 5 lists the parameters of a number of codes for a range of d, where in each case p = 1. The
encoder/decoder complexity may be traded off for efficiency in a systematic manner by specifying a lower
rate. Note that there are fewer than q + 1 distinct edge labels in each trellis stage.

The STPPM codes demonstrate throughput gains of 11 to 17 percent over PPM. However, this may
come at the cost of lowering the bits transmitted per pulse. Figure 15 illustrates the performance of an
STPPM code relative to 8-PPM and 16-PPM for d = 16. The minimum distance of the three codes is the
same, and the throughput of the PPM schemes are the same, whereas STPPM has a 14 percent higher
throughput. The performance is differentiated due to the energy-per-bit requirements. STPPM transmits
an average 3.375 bits per pulse whereas 16-PPM transmits 4 bits per pulse—yielding a net gain relative
to STPPM of ≈ 0.74 dB—and 8-PPM transmits 3 bits per pulse—for a net loss relative to STPPM of
≈ 0.5 dB.

Table 5. STPPM variable-out-degree
encoder parameters.

d q States Edges ESTPPM

16 7 4 14 0.788

32 10 8 51 0.885

64 17 6 41 0.867

128 27 10 146 0.924

256 46 12 301 0.938

512 81 11 385 0.935
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The efficiency is measured relative to a (d,∞) constraint. However, the codes all impose a maximum
run-length constraint—necessary for timing recovery and desired for distance properties (a fairer measure
of efficiency would be relative to the appropriate (d, k) constraint). The distribution of run-lengths will
impact the performance of timing-recovery schemes. Figure 16 illustrates the distribution of lengths of
run-lengths for PPM, TPPM, one implementation of an STPPM code, and the optimum distribution at
d = 16.

E. Finite-State Constrained Codes

The literature on finite-state constrained codes treats much smaller values of d. Many of the design
issues have received attention, and there are several good tutorials on code construction, e.g., [8,9,21,22].
Here we tabulate upper and lower bounds on the complexity of finite-state code trellises, measured via
the number of states, using bounds established in [23]. Table 6 illustrates the results, comparing them
to parameters for variable- and fixed-out-degree STPPM trellises. The rate in each case is 1/q. The
complexity of the finite-state code is for a code into the (d,∞) constraint, not into a (d, k), k < ∞
constraint. Several rates are tabulated for d = 128 and 256 to illustrate trade-offs of complexity for
efficiency. The upper bound is from an existence proof and is generally loose. It is not known how tight
the lower bound is.
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Table 6. Finite-state code parameters.

Number of states

Finite state STPPM STPPM
d q variable fixed

Lower Upper out degree out degree
bound bound

16 7 4 16 4 10

32 10 8 64 8 36

64 17 12 160 6 35

128 28 20 448 7 51

27 25 688 10 130

256 48 32 2448 8 112

46 44 2940 12 270

512 81 73 8887 11 342

F. Complexity Comparisons

As seen in Fig. 17, the STPPM codes demonstrate throughput (measured in bits per second) gains of
11 to 17 percent over PPM. However, this may come at the cost of higher complexity, as seen in Fig. 18,
where FS is the lower bound on the complexity of a finite-state construction.

V. The Constrained Code in a Concatenated Coding Scheme

The larger coding structure will use the constrained code in concert with an error-correcting code
(ECC). The codes will be concatenated serially, as illustrated in Fig. 1. A bit interleaver may be inserted
between the codes, serving to disperse error bursts in decoding and providing particular performance
improvement in iterative decoding schemes. We will use the notation Co → Ci to denote the noniteratively
decoded serial concatenation of outer code Co and inner code Ci. Iteratively decoded codes are denoted
by Co ↔ Ci. Iterative decoding follows the description in Appendix C; see also [24].

The concatenated order in Fig. 1 was not a foregone conclusion. Alternative concatenations of the
codes may be considered, and various concatenations of a constrained code with an ECC have been
addressed for magnetic and optical storage channels, e.g., [25,26]. The variations are proposed largely
due to the high rates of constrained codes for storage—typically m/(m + 1), where m is on the order
of 10 to 20. Such high-rate codes have poor error-correction capabilities, high decoding complexity, and
considerable error propagation. Hence, there is some motivation for placing them outside of an ECC.
However, for our applications, the very low rates of the constrained code favor the concatenation in Fig. 1.

The baseline system is taken to be RS(M − 1, k) → M -PPM, where RS(M − 1, k) denotes a rate
k/(M − 1) Reed–Solomon code and the PPM demodulator produces hard decisions. (Here, k does not
refer to the run-length constraint.) Prior work investigated the system PCCC → M -PPM [27], where
PCCC is an iteratively decoded parallel concatenated convolutional code and the PPM demodulator
produces soft-decisions—although it is not included in iterations. Peleg and Shamai [28] investigated the
system PCCC ↔ M -PPM on a discrete-time Rayleigh-fading model, illustrating performance 1 to 2 dB
from capacity.

We did not simulate the system RS(n, k) → STPPM, which would replace hard-decision PPM with a
higher-throughput constrained code. Since hard decisions are sufficient, the low-complexity ML decoder
described by a variable-out-degree (VOD) trellis could be used to decode STPPM. In this case, there is
a trade-off of average transmitted energy and complexity for throughput.
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A. Simulation Results

Figure 19 illustrates performance under a d = 16 constraint. Uncoded 16-PPM satisfying (d, k) =
(16, 46), a rate-1/7 STPPM code satisfying (d, k) = (16, 32), RS(15, 9) → 16-PPM, CC(3, 1/2) ↔
16-PPM, and CC(3, 1/2) ↔ STPPM are illustrated, where CC(3, 1/2) is the four-state convolutional
code with generator polynomial g(D) = [1(1 + D2)/(1 + D + D2)]. The capacity limits for throughput
(1/14) bits/slot on a hard- and soft-decision channel constrained to use a 16-ary orthogonal signal set,
e.g., 16-PPM, are also illustrated. These curves represent the theoretical limits of a channel using 16-PPM
with hard and soft decisions, respectively.

Both CC(3, 1/2) ↔ 16-PPM and CC(3, 1/2) ↔ STPPM used a 512-bit interleaver and 8 iterations.
They illustrate gains of ≈2.5 dB over RS(15, 9) → 16-PPM at a bit-error rate of 10−5. Simulation
results demonstrate that four iterations would be sufficient at the higher values of SNR. A small addi-
tional gain of approximately 0.2 dB was found for a 4096-bit interleaver with CC(3, 1/2) ↔ 16-PPM.
Note that CC(3, 1/2) ↔ STPPM has a higher throughput (1/14 bits/slot) than CC(3, 1/2) ↔ 16-PPM
(1/16 bits/slot).

Figure 20 illustrates performance under a d = 1024 constraint. Uncoded 256-PPM satisfying
(d, k) = (1024, 1534), RS(255, 128) → 256-PPM, and CC(3, 1/2) ↔ 256-PPM for two interleaver sizes
are illustrated. The capacity limits for throughput 1/320 bits/slot on a hard- and soft-decision channel
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constrained to use a 256-ary orthogonal signal set are also illustrated. CC(3, 1/2) ↔ 256-PPM with a
4096-bit interleaver and 8 iterations shows gains of 2.3 dB over RS(255, 128) → 256-PPM at a bit-error
rate of 10−5. CC(3, 1/2) ↔ 256-PPM performs 0.4 dB better than any system with the same throughput
that uses hard-decision 256-PPM.

These results are surprising in light of the low complexity of the constituent codes and lack of recursive-
ness in the inner code. They provide a strong argument for replacing the baseline RS(M−1, k) → M -PPM
with a low-complexity ECC serially concatenated with PPM or some other constrained code.
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VI. Conclusions/Future Work

There are certain trade-offs in replacing PPM with STPPM or another constrained code. The con-
strained codes considered provide higher throughput at the cost of increased complexity. Whether the
code gains in energy per transmitted bit and run-length distribution depends on implemented parameters.

The gains of the concatenated, iteratively decoded schemes over the baseline RS→PPM are more clear.
We have illustrated that low-complexity iterative schemes provide significant gains over the baseline. We
expect to improve on these gains with a better understanding of the interaction between the outer code
and constrained code. For example, recent results that include an accumulator—a 1/(1 + D) mapping—
prior to the PPM mapping in order to add recursiveness to the mapping have shown significant additional
gains for small d.

We conjecture that the interleaver in the serially concatenated system need only be large enough to
distribute each bit in the most likely error bursts from the outer code into distinct PPM symbols. We
expect that interleavers larger than this will show only small improvements.

The iteratively decoded schemes do, however, rely on statistics from each signal slot. This may be
infeasible at the proposed operating rates. Future work will investigate the degradation in performance
when approximations to complete slot statistics are used.
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Appendix A

Frame Resynchronization in TPPM

Let ai ∈ {1, · · · , M} denote the ith transmitted M -ary TPPM symbol, âi the estimate of ai at the
detector, si = si−1 +ai +d the location of the ith frame, and ŝi = ŝi−1 + âi +d the corresponding estimate
of si. Suppose the detector is initially synchronized, ŝi = si, and an error is made in the estimate of
the current slot, âi 
= ai. Let q denote the probability of this event, and assume that incorrect slots are
chosen equally likely.

If âi+1 = ai+1 − âi + ai, i.e., the next signal slot occurs in the following window and is detected
correctly, then ŝi+2 = si+2, and the detector is synchronized. The detector will resynchronize in k frames
where k is the first integer such that

âi+k − ai+k = −
k−1∑
j=1

âi+j − ai+j

Let e
def= a(i) − âi; hence, q = P [e 
= 0]. Assuming nonsignal slots are chosen equally likely, e has

distribution

p(e) =




q

M(M − 1)
(M − |e|), e 
= 0

1 − q, e = 0

The probability of a frame resynchronization in the frame following a loss of synchronization is

P [âi+1 − ai+1 = e|e 
= 0] =
P [âi+1 − ai+1 = e, e 
= 0]

q

The problem reduces to finding the joint probability:

P [âi+1 − ai+1 = e, e 
= 0] =
∑

(âi+1,ai+1,e):e�=0,âi+1−ai+1=e

p(âi+1, ai+1, e)

=
∑

(âi+1,ai+1,e):e�=0,âi+1−ai+1=e

p(ai+1)p(e|ai+1)p(âi+1|ai+1, e)

=
q

M2(M − 1)

∑
(âi+1,ai+1,e):e�=0,âi+1−ai+1=e

(M − |e|)(1 − q)

=
q(1 − q)

3M
(2M − 1)
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Appendix B

Decoding on a Variable-Out-Degree Trellis

The encoders/decoders for the STPPM codes have a compact description via a variable-out-degree
(VOD) trellis. The VOD trellis may be used as the basis for the encoding mapping. The VOD trellis
may also be used without modification to form a maximum-likelihood (ML) estimate via, for example,
the Viterbi algorithm. Decisions would be delayed, however typically no longer than existing delay due
to the truncation depth. On the other hand, certain modifications will be necessary to form a maximum
a posteriori (MAP) estimate via, for example, the BCJR algorithm. In this appendix, we describe these
modifications and compare the costs of using a VOD trellis to a fixed-out-degree trellis.

Assume the code is described by a time-invariant trellis (straightforward modifications would treat
time-varying trellises) consisting of a set of states V and a set of directed, labeled edges E . Each edge
e ∈ E has an initial state, i(e), and terminal state, t(e). Edge j is denoted by e;j , the edge at time k by
ek, and ek;j denotes edge j at time k. Let sk denote the state at time k, so that t(ek−1) = sk = i(ek). Let
pk(e|i(e)) def= P{ek = e|i(ek) = i(e)} denote the conditional edge probability and u(e) and c(e) denote the
input and output edge labels. Our running example will be the VOD trellis for a rate-1/7 code into the
(d, k) = (16, 31) constraint whose input mapping is described in Table B-1. Input edge labels are denoted
uk−2uk−1uk, uk−3uk−2uk−1uk, or x for “don’t care.” Output edge labels are similarly labeled such that
prior bits are to the left of the current bit.

Appendix C contains a derivation of a MAP algorithm, and notation in this appendix follows definitions
in Appendix C. Note that the algorithm computes probabilities of edges directly, as opposed to states,
which generalizes in a straightforward manner to a VOD trellis. Note that for a VOD trellis one cannot
assume uk = u(ek) or that pk(e|i(e)) = P{uk = u(e)} since the kth input may not map to the kth edge
in the trellis.

Let Em denote the allowable length m paths in the trellis, i.e., Em def= {ek:k+m−1|i(ej) = t(ej−1), j =
k, · · · , k + m − 2}, and Em

0 ⊆ Em is the subset of those paths whose input labels contain uk = 0. Then

Pk(u = 0;O) =
∑

ek:k+2∈E3

P{ek:k+2, uk = 0|y}

=
∑

ek:k+2∈E3

P{ek:k+2|y}P{uk = 0|ek:k+3,y}

=
∑

ek:k+2∈E3
0

P{ek:k+2|y}

Paths of length 3 are chosen for this trellis so that P{uk = 0|ek:k+3,y} is an indicator function for the
set E3

0 . Note also that for this trellis P{ek:k+2|y} = P{ej |y}, where ej is the unique edge in the path
ek:k+2 that appears in parallel to another edge. Let E ′

0 denote the collection of these edges. Then

Pk(u = 0;O) =
∑

ej∈E′
0

P{ej |y}
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Table B-1. R = 1/7 (d,k ) = (16,31)
STPPM mapping.

Edge i(e) t(e) u(e) c(e)

e;1 1 2 x 0000000

e;2 2 3 x 0000000

e;3 3 1 000 0010000

e;4 3 1 001 0001000

e;5 3 1 010 0000100

e;6 3 1 011 0000010

e;7 3 1 100 0000001

e;8 3 4 x 0000000

e;9 4 1 1010 0100000

e;10 4 1 1011 0010000

e;11 4 1 1100 0001000

e;12 4 1 1101 0000100

e;13 4 1 1110 0000010

e;14 4 1 1111 0000001

where E ′
0 = {ek;3,5,7,9,11,13, ek+1;3,4,7,11,12, ek+2;3,4,5,6,9,10}, and

Pk(u = 1;O) =
∑

ej∈E′
1

P{ej |y}

where E ′
1 ={ek;4,6,10,12,14, ek+1;5,6,9,10,13,14, ek+2;7,8,11,12,13,14}. Note that ek+2;8 replaces ek+3;9,10,11,12,13,14

in E ′
1.

It remains to specify how to solve for pk

(
e|i(e)

)
given the sequence Pk(u = 0; I). Clearly, for all edges

not in parallel with another edge, pk

(
e|i(e)

)
= 1. Only states 3 and 4 have parallel outgoing edges.

Consider first an edge with i(e) = 3:

pk

(
ek = 3|i(ek) = 3

)
= P{uk = 0, uk−1 = 0, uk−2 = 0|i(ek) = 3}

= P{uk = 0|i(ek) = 3}P{uk−1 = 0|i(ek) = 3}P{uk−2 = 0|i(ek) = 3}

= Pk(0; I)Pk−1(0; I)Pk−2(0; I)

The second equation follows from an assumption that bits uk are independent. The third equation
follows since, given i(ek) = 3, the prior two transitions are not data dependent. Similar analysis yields
the conditional edge probabilities for all edges with i(e) = 3. Consider an edge with i(e) = 4:
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pk

(
ek = 11|i(ek) = 4

)
= P{uk:k−3 = 0011|ek−1 = 8, sk−1 = 3}

=
P{uk:k−3 = 0011, ek−1 = 8|sk−1 = 3}

pk−1(ek−1 = 8|i(ek−1) = 3)

=
P{uk:k−3 = 0011|sk−1 = 3}

pk−1(8|3)

=
Pk(0; I)Pk−1(0; I)Pk−2(1; I)Pk−3(1; I)

pk−1(8|3)

Similar analysis yields analogous equations for all other edges with i(e) = 4.

We summarize the decoding operation and perform a rough analysis of the decoding complexity in
Table B-2. Certain simplifications follow the discussion in Appendix C.

The total cost per (half)-iteration is

76N multiplications, 54n additions

Compare this to decoding a fixed-out-degree trellis. The equivalent fixed-degree trellis has 10 states, and
two outgoing edges per state. An estimate from Table C-1 yields a total cost per (half)-iteration of

64N multiplications, 40N additions

The cost in computations per iteration favors the fixed-out-degree trellis in this example. However, we an-
ticipate that for larger d the complexity of decoding the VOD trellis will be lower. Certain simplifications
may also be made to the computations in steps 2 and 7 of Table B-2.

Table B-2. VOD MAP algorithm summary.

Step Cost

1. Receive y None

2. Determine pk

(
e|i(e)

)
20N multiplies

3. Compute γk(e) 12N multiplies

4. Compute βk

(
t(e)

)
14N multiplies

11N adds

5. Compute αk(e) 14N multiplies

11N |E| adds

6. Compute λk(e) 14N multiplies

7. Compute Pk(u; O) 32N adds, 2N multiplies

Total: 76N multiplies, 54N adds
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Appendix C

Symbol Estimates via A Posteriori
Probabilities of Edges

A block of information symbols u = (u1, · · · , uN ) is encoded by a code C to yield a codeword c =
C(u) = (c1, · · · , cN ), where uk, ck are binary vectors. The code is described by a time-invariant trellis
(straightforward modifications would treat time-varying trellises) consisting of a set of states, V, and a
set of directed, labeled edges, E . Each edge e ∈ E has an initial state, i(e), and terminal state, t(e). Let
sk denote the state at time k, so that t(ek−1) = sk = i(ek); let u(e) and c(e) denote the input and output
edge labels such that uk = u(ek) and ck = c(ek). Throughout we use the notation ui:j

def= (ui, ui+1, · · · , uj),
and shorthand P{u} = P{uk = u} when this is clear from the context.

A symbol sequence y = (y1, · · · , yN ) is observed, where y is conditionally independent of prior obser-
vations and edges given the previous edge, i.e., P{yk:k+m|ej , yj ; j ≤ k − 1} = P{yk:k+m|ek−1}.

It is assumed we have estimates,

Pk(u; I) def= P̂{uk = u}

Pk(c; I) def= P̂{ck = c}

of the distributions on u and c, where I denotes that this is a priori, or input, information. Given the
observation y, and knowledge of C, we desire to compute the quantities

Pk(u;O) def= P{uk = u|y}

Pk(c;O) def= P{ck = c|y}


 (C-1)

where O denotes that this is a posteriori, or output, information. These are obtained by computing

P{uk = u,y} =
∑

e:u(e)=u

P{ek = e,y}

P{ck = c,y} =
∑

e:c(e)=c

P{ek = e,y}

Hence, we need to determine

λk(e) def= P{ek = e,y}

for each edge in the trellis. To this end, define
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αk(e) def= P{ek = e, y1:k}

βk(e) def= P{yk+1:N |ek = e}

γk(e) def= P
{
ek = e, yk|i(ek) = i(e)

}

=P
{
ek = e|i(ek) = i(e)

}
P{yk|ek = e}

and note that

λk(e) = P{ek = e, y1:k}P{yk+1:N |ek = e, y1:k}

= αk(e)βk(e)

αk(e) =
∑
e′∈E

P{ek−1 = e′, ek = e, y1:k−1, yk}

=
∑
e′∈E

P{ek−1 = e′, y1:k−1}P{ek = e, yk|ek−1 = e′}

=
∑

e′:t(e′)=i(e)

αk−1(e′)γk(e)

= γk(e)
∑

e′:t(e′)=i(e)

αk−1(e′)

βk(e) =
∑
e′∈E

P{ek+1 = e′, yk+2:N , yk+1|ek = e}

=
∑
e′∈E

P{yk+2:N |ek+1 = e′}P{ek+1 = e′, yk+1|ek = e}

=
∑

e′:i(e′)=t(e)

βk+1(e′)γk+1(e′)

The algorithm is initialized by setting

α1(e) = P{e1 = e}P{y1|e1 = e}

βN−1(e) =
∑

e′:i(e′)=t(e)

γN (e′)

or, equivalently, βN (e) = 1 (βN is not required as λN (e) = αN (e)).
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If all outgoing edges from a state have distinct input labels, then

P
{
ek = e|i(ek) = i(e)

}
= P

{
uk = u(e)

}

= Pk

(
u(e); I

)
We encounter two common cases of the observation y. Suppose the observation is y = c + n, where
n ∼ N (0, σ2I), e.g., the output observed by transmitting the coded sequence over an AWGN channel.
Extensions to other channels are straightforward. Then

Pk

(
c(e); I

)
= K exp

(−||yk − c(e)||2
2σ2

)

= P{yk|ek = e}

where K is a constant and || · || denotes the Euclidean norm. Alternately, suppose the observation is
y = c, e.g., the estimated output from an inner code. Then

P{yk|ek = e} = P
{
ck = c(e)

}

= Pk

(
c(e); I

)
In either case, the observed and a priori information enter the algorithm via the term

γk(e) = Pk

(
u(e); I

)
Pk

(
c(e); I

)

Finally, we have

Pk(u;O) =

∑
e:u(e)=u λk(e)∑

e∈E λk(e)

Pk(c;O) =

∑
e:c(e)=c λk(e)∑

e∈E λk(e)

Note that multiplying each λk(e) by a constant independent of e will not affect the result. Hence, one
can multiply the α’s, β’s, or γ’s by a constant for each k to simplify computation or prevent over or under
flow. Bit probabilities, rather than symbol probabilities, follow via some straightforward extensions, e.g.,
[24].

I. Computational Complexity

The following straightforward simplifications are made to the algorithm to yield a rough analysis
of decoding complexity. Note that βk(e) depends only on t(e); hence, we can compute and store one
value per state. Similarly, the sum in computing αk(e) need only be determined once for each state.
The term

∑
e∈E λk(e) can be computed once, and γk(e) need only be computed for the distinct pairs
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(
Pk(u(e); I), Pk(c(e); I)

)
—typically one of these distributions is assumed uniform; hence, the cost of

computing γk(e) is proportional to the size of the associated input or output alphabet. By computing the
βk’s prior to the αk’s, the storage requirements are only negligibly increased over a state-based algorithm.

Let A denote the input alphabet, i.e., uk ∈ A. The algorithm and an approximation of associated
costs for computing Pk(u;O) are listed in Table C-1.

For a code with |E| = |A||V|, the total cost per (half)-iteration is approximately

3N |E|multiplies, 3N |E| − 2N |V|adds

Compare this to the complexity of state-based BCJR,3 e.g., [29], for which the cost per (half)-iteration
is approximately

4N |E|multiplies, 3N |E| − 2N |V|adds

The edge-based algorithm has ≈25 percent fewer multiplies per iteration. However, this advantage occurs
in computing probabilities of events that are a function of the edges. As a counter example, to compute
Eq. (C-1) for a convolutional code where all inputs to a state have the same input label, it would be more
efficient to use [29].

Table C-1. MAP algorithm summary.

Step Cost

1. Receive y None

2. Determine Pk(u; I), Pk(c; I) Varies

3. Compute γk(e) N |A|
4. Compute βk

(
t(e)

)
N |E| multiplies

N(|E| − |V|) adds

5. Compute
∑

e′:t(e′)=i(e)
αk−1(e′) N(|E| − |V|) adds

αk(e) = γk(e)
∑

e′:t(e′)=i(e)
αk−1(e′) N |E| multiplies

6. Compute λk(e) N |E| multiplies

7. Compute Pk(u; O) N |E| adds, N |A| multiplies

Total: 3N |E| + 2N |A| multiplies, 3N |E| − 2N |V| adds

3 K. Andrews, “Ken’s Turbo Decoder,” preprint, Jet Propulsion Laboratory, Pasadena, California, 2001.
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